1. Le basi del ragionamento

1.3 Insiemi dotati di struttura

Richiamiamo le Conoscenze

Operazioni binarie e loro proprietà Relazioni binarie

Date le seguenti operazioni calcolare quanto proposto. Nel seguito max(a; b) calcola il massimo fra i numeri a e b; min(a; b) calcola il minimo fra i numeri a e b

- 1. n * m = n + 2m : a) 3 * 7; b) 5 * 0; c) 0 * 5; d) 12 * 2.a) $3 * 7 = 3 + 2 \cdot 7 = 17; b) 5 * 0 = 5 + 2 \cdot 0 = 5; c) 0 * 5 = 0 + 2 \cdot 5 = 10; d) 12 * 2 = 12 + 2 \cdot 2 = 16$
- 2. m & n = 5m + 2n: a) 5 & 3; b) 6 & 0; c) 0 & 6; d) 7 & 7; e) 3 & 5. a) $5 \& 3 = 5 \cdot 5 + 2 \cdot 3 = 31$; b) $6 \& 0 = 5 \cdot 6 + 2 \cdot 0 = 30$; c) $0 \& 6 = 5 \cdot 0 + 2 \cdot 6 = 12$; d) $7 \& 7 = 5 \cdot 7 + 2 \cdot 7 = 49$; e) $3 \& 5 = 5 \cdot 3 + 2 \cdot 5 = 25$
- 3. $m \propto n = m^2 n^2$: a) $3 \propto 2$; b) $-2 \propto 1$; c) $-3 \propto -2$; d) $1 \propto 0$ a) $3 \propto 2 = 3^2 - 2^2 = 5$; b) $-2 \propto 1 = (-2)^2 - 1^2 = 3$; c) $-3 \propto -2 = (-3)^2 - (-2)^2 = 5$; d) $1 \propto 0 = 1^2 - 0^2 = 1$
- 4. $a\Theta b = \frac{a \cdot b}{a + b}$: a) 3 Θ 5; b) 0 Θ 1; c) -2 Θ -1; d) $\frac{1}{2}\Theta \frac{2}{3}$ a) $\frac{3 \cdot 5}{3 + 5} = \frac{15}{8}$; b) $\frac{0 \cdot 1}{0 + 1} = 0$; c) $\frac{-2 \cdot (-1)}{-2 - 1} = -\frac{2}{3}$; d) $\frac{1/2 \cdot 2/3}{1/2 + 2/3} = \frac{1/3}{7/6^2} = \frac{2}{7}$
- 5. a) max(-2; 5); b) max(4; 0); c) max(-7; -7); d) max(3/4; -5/2) a) 5; b) 4; c) -7; d) 3/4
- 6. a) min(8; -2); b) min(-3; -5); c) min(0; -1); d) min(-4/3; -5/4)a) -2; b) -5; c) -1; d) -4/3
- 7. $a\Theta b = \frac{a-b}{a+b}$: a) (-4 \Omega 1) \Omega (-2); b) (3 \Omega 0) \Omega 0; c) -2/3 \Omega (2/3 \Omega 3/4)

a)
$$\frac{-4-1}{-4+1}\Theta(-2) = \frac{5}{3}\Theta(-2) = \frac{5/3-(-2)}{5/3-2} = \frac{11/3}{-1/3} = -11;$$
 b) $\frac{3-0}{3+0}\Theta(0) = 1\Theta(0) = \frac{1-0}{1+0} = 1;$

c)
$$-\frac{2}{3}\Theta\frac{2/3-3/4}{2/3+3/4} = -\frac{2}{3}\Theta\frac{-1/\cancel{12}}{17/\cancel{12}} = -\frac{2}{3}\Theta\left(-\frac{1}{17}\right) = \frac{-2/3-\left(-1/17\right)}{-2/3-1/17} = \frac{-31/\cancel{5}\cancel{1}}{-37/\cancel{5}\cancel{1}} = \frac{31}{37}$$

8. $a \otimes b = \frac{a-2b}{2a+b}$: a) (3 \otimes 5) \otimes 0; b) -3 \otimes (0 \otimes (-4)); c) -1/2 \otimes (3/7 \otimes 2/9)

a)
$$\frac{3-2\cdot5}{2\cdot3+5}\otimes 0 = \frac{-7}{11}\otimes 0 = \frac{-7/11-2\cdot0}{2\cdot(-7/11)+0} = -\frac{1}{2}$$
 b) $-3\otimes\frac{0-2\cdot(-4)}{2\cdot0-4} = -3\otimes(-2) = \frac{-3-2\cdot(-2)}{2\cdot(-3)-2} = -\frac{1}{8}$

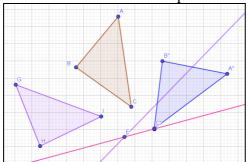
c)
$$-\frac{1}{2} \otimes \frac{3/7 - 2 \cdot (2/9)}{2 \cdot (3/7) + 2/9} = -\frac{1}{2} \otimes \frac{3/7 - 4/9}{6/7 + 2/9} = -\frac{1}{2} \otimes \frac{-1/63}{68/63} = \frac{-1/2 - 2 \cdot (-1/68)}{2 \cdot (-1/2) - 1/68} = \frac{-1/2 + 1/34}{-1 - 1/68} = \frac{-32/68}{-69/68} = \frac{32}{69}$$

- 9. a) max(max(1; min(2; 3)); min(4; min(1; 5))); b) max(min(1; max(2; 3)); min(4; max(1; 5)))
- a) max(max(1; 2); min(4; 1)) = ; max(2; 1) = 2 ; b) max(min(1; 3); min(4; 5)) = max(1; 4) = 410. a) min(max(1; max(2; 3)); max(4; min(1; 5))); b) max(max(1; max(2; 3)); max(4; max(1; 5)))
- a) min(max(1; max(2; 3)); max(4; min(1; 3))); b) max(max(1; max(2; 3)); max(4; max(1; 3)))a) min(max(1; 3); max(4; 1)) = min(3; 4) = 3; b) max(max(1; 3); max(4; 5)) = max(3; 5) = 5 Osserviamo che essendo tutti max il risultato è ovviamente il più grande dei numeri presenti.
- 11. min(min(1; min(2; 3)); min(4; min(1; 5)))Ragionando come nel b) precedente, facilmente si ha: 1
- 12. $(a; b) \Phi (c; d) = (a c; b + d)$, definita in \mathbb{R}^2 :

- a) (2; 1) Φ (1; 2); b) (1; 0) Φ (0; -2); c) (3; 2) Φ (-4; 5); d) (1/2; 1) Φ (2/3; -1/4) a) (2 1; 1 + 2) = (1; 3); b) (1 0; 0 2) = (1; -2);
- c) (3-(-4); 2+5) = (7; 7); d) (1/2-2/3; 1-1/4) = (-1/6; 3/4)
- 13. Data l'operazione: $m \pounds n = m 2n$, trovare almeno due numeri naturali m ed n per cui $m \pounds n = 0$. $m 2n = 0 \Rightarrow m = 2n$, quindi per esempio: (2, 1), (4, 2), (6, 3), ...
- 14. Data l'operazione: $m \nabla n = 2m + 3n$, determinare, se esiste, almeno un numero n per cui $n\nabla n = n^2$.
 - $2n + 3n = n^2 \Rightarrow 5n = n^2 \Rightarrow n = 0 \lor n = 5$
- 15. Definiamo la seguente operazione ternaria $[a; b; c] = a^b b^c + c^a$. Calcolare:
 - a) [1; -1; 2]; b) [-1; 1; 2]; c) [2; -1; 1]; d) [2; 1; -1]; e) [1; 1; 0]
 - a) $1^{-1} (-1)^2 + 2^1 = 1 1 + 2 = 2$; b) $= -1^1 1^2 + 2^{-1} = -1 1 + 1/2 = -3/2$;
 - c) = $2^{-1} (-1)^1 + 1^2 = \frac{1}{2} + 1 + 1 = \frac{5}{2}$; d) = $2^1 1^{-1} + (-1)^2 = 2 1 + 1 = 2$;
 - $e) = 1^{1} 1^{0} + 0^{1} = 1 1 + 0 = 0$
- 16. Definita l'operazione $x \otimes y = 4x 3y + xy$, risolvere le equazioni:
 - a) $3 \otimes y = 12$; b) $x \otimes 3 = 12$; c) $0 \otimes y = 1$; d) $x \otimes 0 = 1$; e) $1 \otimes y = 0$; f) $x \otimes 1 = 0$
 - a) $4.3 3y + 3y = 12 \Rightarrow 12 = 12 \Rightarrow \text{Identita}$; b) $4x 3.3 + 3x = 12 \Rightarrow 7x = 21 \Rightarrow x = 3$;
 - c) $4.0 3y + 0.9 = 1 \Rightarrow -3y = 1 \Rightarrow y = -1/3$; d) $4x 3.0 + x.0 = 1 \Rightarrow 4x = 1 \Rightarrow x = 1/4$;
 - e) $4 \cdot 1 3y + 1 \cdot y = 0 \Rightarrow 4 3y + y = 0 \Rightarrow -2y = -4 \Rightarrow y = 2$; f) $4x 3 \cdot 1 + x \cdot 1 = 0 \Rightarrow 5x = 3 \Rightarrow x = 3/5$
- 17. Data l'operazione: m + n = m n + 1, determinare, tutti i numeri n ed m per cui n + m = m + n. $n m + 1 = m n + 1 \Rightarrow 2m = 2n \Rightarrow m = n$

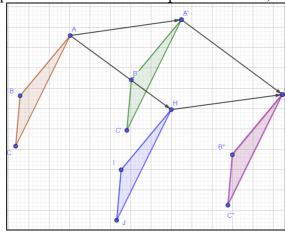
Stabilire quali fra le seguenti operazioni verificano la proprietà commutativa.

- 18. a) Operazioni logiche; b) Composizione di simmetrie assiali
 - a) Tutte, tranne l'implicazione materiale, come si vede facilmente dalle tabelle di verità; b) No in figura il triangolo ABC ha due diversi corrispondenti a seconda dell'ordine di composizione rispetto alle



rette mostrate

- 19. a) Prodotto cartesiano tra insiemi; b) Composizione di traslazioni
 - a) No: Sia $A = \{1, 2\}$, $B = \{3\} \Rightarrow A \times B = \{(1, 3), (2, 3)\}$, mentre $B \times A = \{(3, 1), (3, 2)\}$
 - b) Si: in figura ABC, comunque traslato va a finire sempre in A"B"C",



- **20.** a) Operazioni insiemistiche; b) $a > b = \sqrt[b]{a}$; c) a^b
 - a) Tutte, tranne la differenza. Per esempio $A = \{1, 2\}$, $B = \{2, 3\}$, si ha: $A \setminus B = \{1\}$, $B \setminus A = \{3\}$
 - b) No, per esempio $2 > 3 = \sqrt[2]{3}$, $3 > 2 = \sqrt[3]{2}$, ; c) No per esempio $2^3 \neq 3^2$.

21. a)
$$a\Theta b = \frac{a \cdot b}{a + b}$$
; b) $a\Lambda b = \frac{a + b}{a \cdot b}$; c) $a\Xi b = \frac{a - b}{a + b}$

a) Sì:
$$b\Theta a = \frac{b \cdot a}{b + a} = a\Theta b$$
; b) Sì: $b\Lambda a = \frac{b + a}{b \cdot a} = a\Lambda b$; c) No, per esempio: $2\Xi 1 = \frac{2 - 1}{2 + 1} = \frac{1}{2}; 1\Xi 2 = \frac{1 - 2}{1 + 2} = -\frac{1}{2}$

22. a)
$$x \otimes y = max(x, y)$$
; b) $x \oplus y = min(x, y)$; c) $a \propto b = \frac{a+b}{2}$; b) $x \vee y = (x+1) \cdot (y+1) - 1$

a) Sì: il massimo di due numeri è sempre quello, indipendentemente dall'ordine in cui i numeri vengono scritti; b) Sì, stessa giustificazione di a); c) Sì perché è una somma; b) Sì; $y \cdot x = (y+1) \cdot (x+1) - 1 = x \cdot y$

23. Composizione di isometrie;

No, basti pensare al quesito 18 b)

Stabilire quali fra le seguenti operazioni verificano la proprietà associativa.

24. a)
$$a > b = \sqrt[b]{a}$$
; b) Elevamento a potenza; c) Operazioni insiemistiche

a) No: per esempio
$$(2 > 3) < 4 = \sqrt[3]{2} < 4 = \sqrt[4]{\sqrt[3]{2}} = \sqrt[12]{2}; 2 < (3 < 4) = 2 < \sqrt[4]{3} = \sqrt[3]{4}$$
;

b) No: per esempio $(2^3)^4 = 8^4$ mentre $2^{3^4} = 2^{81}$; c) Tutte, tranne la differenza. Per esempio $\{1; 2\} \setminus \{3\} \setminus \{1; 4\} = \{1; 2\} \setminus \{3\} = \{1; 2\}$; mentre $(\{1; 2\} \setminus \{1; 3\}) \setminus \{1; 4\} = \{2\} \setminus \{1; 4\} = \{1; 4\}$

a) Sì perché sono coppie ordinate; b) Tutte, tranne l'implicazione materiale, infatti se sono tutte false: $(p \Rightarrow q) \Rightarrow r \ \text{\'e} \ (F \Rightarrow F) \Rightarrow V \equiv V \Rightarrow F \equiv F$, mentre $p \Rightarrow (q \Rightarrow r) \ \text{\'e} \ F \Rightarrow F \Rightarrow V \equiv V$

26. a)
$$a\Theta b = \frac{a \cdot b}{a + b}$$
; b) $a\Lambda b = \frac{a + b}{a \cdot b}$; c) $a\Xi b = \frac{a - b}{a + b}$; d) $x \otimes y = max(x; y)$

a) Si:
$$a\Theta(b\Theta c) = a\Theta \frac{b \cdot c}{b + c} = \frac{a \cdot \frac{b \cdot c}{b + c}}{a + \frac{b \cdot c}{b + c}} = \frac{abc}{ab + ac + bc}; (a\Theta b)\Theta c = \frac{a \cdot b}{a + b}\Theta c = \frac{\frac{a \cdot b}{a + b} \cdot c}{\frac{a \cdot b}{a + b} + c} = \frac{abc}{ab + ac + bc};$$

b) No:
$$(a\Lambda b)\Lambda c = \frac{a+b}{a \cdot b}\Lambda c = \frac{\frac{a+b}{a \cdot b} + c}{\frac{a+b}{a \cdot b} \cdot c} = \frac{a+b+abc}{ac+bc}; a\Lambda(b\Lambda c) = a\Lambda \frac{b+c}{b \cdot c} = \frac{a+\frac{b+c}{b \cdot c}}{a \cdot \frac{b+c}{b \cdot c}} = \frac{abc+b+c}{ab+ac};$$

c) No:
$$(a \pm b) \pm c = \frac{a - b}{a + b} \pm c = \frac{\frac{a - b}{a + b} - c}{\frac{a - b}{a + b} + c} = \frac{a - b - ac - bc}{a - b + ac + bc}; a \pm (b \pm c) = a \pm \frac{b - c}{b + c} = \frac{a - \frac{b - c}{b + c}}{a + \frac{b - c}{b + c}} = \frac{ab + ac - b + c}{ab + ac + b - c};$$

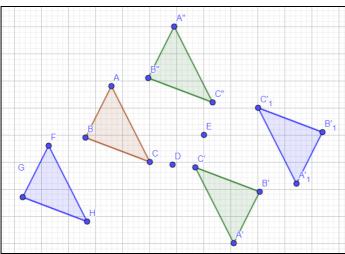
d) Sì; $(x \otimes y) \otimes z = max(max(x; y); z)$ e $x \otimes (y \otimes z) = max(x; max(y; z))$, in ogni caso si sceglie il maggiore dei tre numeri.

27. a) $x \oplus y = min(x, y)$; b) $x \Psi y = (x + 1) \cdot (y + 1) - 1$; c) Composizione di isometrie

a) Sì, vedi ragionamento del 26 c);

b) Si:
$$(x \lor y) \lor z = [(x+1) \cdot (y+1) - 1] \lor z = [(x+1) \cdot (y+1) - 1 + 1] \cdot (z+1) - 1 = (x+1) \cdot (y+1) \cdot (z+1) - 1$$
; $x \lor (y \lor z) = x \lor [(y+1) \cdot (z+1) - 1] = (x+1) \cdot [(y+1) \cdot (z+1) - 1 + 1] - 1 = (x+1) \cdot (y+1) \cdot (z+1) - 1$;

c) No, basti pensare a due simmetrie centrali di centri diversi, come in figura:



28. (Invalsi 2006) Nell'insieme dei numeri razionali non negativi può essere definita una particolare operazione tra coppie di numeri, che si indicherà con \Diamond , che funziona così $a\Diamond b = \frac{a+b}{2}$. Se a,b,c sono tre generici numeri razionali non negativi, quale delle seguenti relazioni è falsa? A) $(a \Diamond b) \Diamond c = a \Diamond (b \Diamond c)$ B) $a \Diamond 0 = a/2$ C) $a \Diamond b = b \Diamond a$ D) $a \Diamond 1 = (a+1) \Diamond 0$

A)
$$(a \diamond b) \diamond c = \frac{a+b}{2} \diamond c = \frac{\frac{a+b}{2} + c}{2} = \frac{a+b+2c}{4}$$
; $a \diamond (b \diamond c) = a \diamond \frac{b+c}{2} = \frac{a+\frac{b+c}{2}}{2} = \frac{2a+b+c}{4}$: falsa

B)
$$a \diamond 0 = \frac{a+0}{2} = \frac{a}{2}$$
: vera. C) $a \diamond b = \frac{a+b}{2} = \frac{b+a}{2} = b \diamond a$: vera

D)
$$a \lozenge 1 = \frac{a+1}{2}; (a+1) \lozenge 0 = \frac{a+1+0}{2} = \frac{a+1}{2}$$
: vera

29. Possiamo dire che max è distributiva rispetto a min?

Sì: consideriamo i vari casi.

- 1) a < b < c, allora: max(a; min(b; c)) = max(a; b) = b; min(max(a; b); max(a; c)) = min(b; c) = b.
- 2) a < c < b, allora: max(a; min(b; c)) = max(a; c) = c; min(max(a; b); max(a; c)) = min(b; c) = c.
- 3) b < a < c, allora: max(a; min(b; c)) = max(a; b) = a; min(max(a; b); max(a; c)) = min(a; c) = a.
- 4) b < c < a, allora: max(a; min(b; c)) = max(a; b) = a; min(max(a; b); max(a; c)) = min(a; a) = a.
- 5) c < a < b, allora: max(a; min(b; c)) = max(a; c) = a; min(max(a; b); max(a; c)) = min(b; a) = a.
- 6) c < b < a, allora: max(a, min(b, c)) = max(a, c) = a, min(max(a, b), max(a, c)) = min(b, a) = a.
- **30.** Possiamo dire che *min* è distributiva rispetto a *max*? Sì.
 - 1) a < b < c, allora: min(a; max(b; c)) = min(a; c) = a; max(min(a; b); min(a; c)) = max(a; a) = a.
 - 2) a < c < b, allora: min(a; max(b; c)) = min(a; b) = a; max(min(a; b); min(a; c)) = max(a; a) = a.
 - 3) b < a < c, allora: min(a; max(b; c)) = min(a; c) = a; max(min(a; b); min(a; c)) = max(b; a) = a.
 - 4) b < c < a, allora: min(a; max(b; c)) = min(a; c) = c; max(min(a; b); min(a; c)) = max(b; c) = c.
 - 5) c < a < b, allora: min(a; max(b; c)) = min(a; b) = a; max(min(a; b); min(a; c)) = max(a; c) = a.
 - 6) c < b < a, allora: min(a; max(b; c)) = min(a; b) = b; max(min(a; b); min(a; c)) = max(b; c) = b.
- 31. Stabilire rispetto a quali delle rimanenti operazioni insiemistiche l'unione è distributiva.
- Intersezione: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. Infatti se $x \in A \cup (B \cap C)$, allora o appartiene ad A, e quindi anche al secondo membro, oppure appartiene a $B \cap C$ e quindi ad entrambi $B \in C$ e perciò al secondo membro. In modo analogo si mostra il viceversa.

Invece non è vero che $A \cup (B \setminus C) = (A \cup B) \setminus (A \cup C)$, per esempio

$$\{1,2\} \cup (\{2,3\} \setminus \{3,4\}) = \{1,2\} \cup \{2\} = \{1,2\}; (\{1,2\} \cup \{2,3\}) \setminus (\{1,2\} \cup \{3,4\}) = \{1,2,3\} \setminus \{1,2,3,4\} = \emptyset$$

Né che $A \cup (B\Delta C) = (A \cup B)\Delta(A \cup C)$, per esempio

$$\{1,2\} \cup (\{2,3\} \Delta \{3,4\}) = \{1,2\} \cup \{2,4\} = \{1,2,4\}; (\{1,2\} \cup \{2,3\}) \Delta (\{1,2\} \cup \{3,4\}) = \{1,2,3\} \Delta \{1,2,3,4\} = \{4\}$$

32. Stabilire rispetto a quali delle rimanenti operazioni insiemistiche l'intersezione è distributiva.

Unione: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. Infatti se $x \in A \cap (B \cup C)$, allora appartiene ad A, e quindi anche al secondo membro. In modo analogo si mostra il viceversa.

Differenza: $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$.

Infatti $x \in A \cap (B \setminus C) \Rightarrow x \in A, x \in B, x \notin C \Rightarrow x \in (A \cap B) \setminus (A \cap C)$

Viceversa: $x \in (A \cap B) \setminus (A \cap C) \Rightarrow x \in A, x \in B, x \notin C \Rightarrow x \in A \cap (B \setminus C)$

Differenza simmetrica: $A \cap (B \Delta C) = (A \cap B) \Delta (A \cap C)$

Infatti

$$x \in A \cap (B \Delta C) \Rightarrow x \in A, x \in B \cup C, x \notin B \cap C \Rightarrow x \in (A \cap B) \Delta (A \cap C) \Rightarrow x \in (A \cap B) \Delta (A \cap C)$$

Viceversa: $x \in (A \cap B) \setminus (A \cap C) \Rightarrow x \in A, x \in B, x \notin C \Rightarrow x \in A \cap (B \setminus C)$

33. Stabilire rispetto a quali delle rimanenti operazioni insiemistiche la differenza simmetrica è distributiva.

Nessuna.

$$\{1,2,3,4\} \ \Delta \ (\{2,3,5,6\} \cup \{3,4,6,7\}) = \{1,2,3,4\} \ \Delta \ \{2,3,4,5,6,7\} = \{1,5,6,7\}; \\ (\{1,2,3,4\} \ \Delta \ \{2,3,5,6\}) \cup (\{1,2,3,4\} \ \Delta \ \{3,4,6,7\}) = \{1,4,5,6\} \cup \{1,2,6,7\} = \{1,2,4,5,6,7\} \\ \{1,2,3,4\} \ \Delta \ (\{2,3,5,6\}) \cap \{3,4,6,7\}) = \{1,2,3,4\} \ \Delta \ \{3\} = \{1,2,4\}; \\ (\{1,2,3,4\} \ \Delta \ \{2,3,5,6\}) \cap (\{1,2,3,4\} \ \Delta \ \{3,4,6,7\}) = \{1,4,5,6\} \cap \{1,2,6,7\} = \{1,6\} \\ \{1,2,3,4\} \ \Delta \ \{2,3,5,6\} \setminus \{3,4,6,7\}) = \{1,2,3,4\} \ \Delta \ \{2,5\} = \{1,3,4,5\}; \\ (\{1,2,3,4\} \ \Delta \ \{2,3,5,6\}) \setminus (\{1,2,3,4\} \ \Delta \ \{3,4,6,7\}) = \{1,4,5,6\} \setminus \{1,2,6,7\} = \{4,5\}$$

34. Stabilire rispetto a quali delle rimanenti operazioni insiemistiche la differenza è distributiva.

Nessuna

$$\{1, 2, 3, 4\} \setminus (\{2, 3, 5, 6\} \cup \{3, 4, 6, 7\}) = \{1, 2, 3, 4\} \setminus \{2, 3, 4, 5, 6, 7\} = \{1\}; \\ (\{1, 2, 3, 4\} \setminus \{2, 3, 5, 6\}) \cup (\{1, 2, 3, 4\} \setminus \{3, 4, 6, 7\}) = \{1, 4\} \cup \{1, 2\} = \{1, 2, 4\} \\ \{1, 2, 3, 4\} \setminus (\{2, 3, 5, 6\} \cap \{3, 4, 6, 7\}) = \{1, 2, 3, 4\} \setminus \{3\} = \{1, 2\}; \\ (\{1, 2, 3, 4\} \setminus \{2, 3, 5, 6\}) \cap (\{1, 2, 3, 4\} \setminus \{3, 4, 6, 7\}) = \{1, 4\} \cap \{1, 2\} = \{1\} \\ \{1, 2, 3, 4\} \setminus \{2, 3, 5, 6\} \triangle \{3, 4, 6, 7\}) = \{1, 2, 3, 4\} \setminus \{2, 5\} = \{1, 3, 4\}; \\ (\{1, 2, 3, 4\} \setminus \{2, 3, 5, 6\}) \triangle (\{1, 2, 3, 4\} \setminus \{3, 4, 6, 7\}) = \{1, 4\} \setminus \{1, 2\} = \{4\}$$

35. Stabilire rispetto a quali delle rimanenti operazioni logiche la congiunzione è distributiva.

Tutte tranne l'implicazione e la coimplicazione.

P	Q	R	$P \wedge (Q \vee R)$	$(P \wedge Q) \vee (P \wedge R)$	P \(\triangle (Q AUT R)	$(P \land Q) AUT (P \land R)$
VERO	VERO	VERO	VERO	VERO	FALSO	FALSO
VERO	FALSO	VERO	VERO	VERO	VERO	VERO
FALSO	VERO	VERO	FALSO	FALSO	FALSO	FALSO
FALSO	FALSO	VERO	FALSO	FALSO	FALSO	FALSO
VERO	VERO	FALSO	VERO	VERO	VERO	VERO
VERO	FALSO	FALSO	FALSO	FALSO	FALSO	FALSO
FALSO	VERO	FALSO	FALSO	FALSO	FALSO	FALSO
FALSO	FALSO	FALSO	FALSO	FALSO	FALSO	FALSO

P	Q	R	$P \wedge (Q \Rightarrow R)$	$(P \land Q) \Rightarrow (P \land R)$	$P \wedge (Q \Leftrightarrow R)$	$(P \wedge Q) \Leftrightarrow (P \wedge R)$
VERO	VERO	VERO	VERO	VERO	VERO	VERO
VERO	FALSO	VERO	VERO	VERO	FALSO	FALSO
FALSO	VERO	VERO	FALSO	VERO	FALSO	VERO
FALSO	FALSO	VERO	FALSO	VERO	FALSO	VERO
VERO	VERO	FALSO	FALSO	FALSO	FALSO	FALSO
VERO	FALSO	FALSO	VERO	VERO	VERO	VERO
FALSO	VERO	FALSO	FALSO	VERO	FALSO	VERO
FALSO	FALSO	FALSO	FALSO	VERO	FALSO	VERO

36. Stabilire rispetto a quali delle rimanenti operazioni logiche la disgiunzione inclusiva è distributiva.

Tutte, tranne la disgiunzione esclusiva

P		D		(D (O) . (D D)	B(O.) B)	(B., O) , (B., B)	B (O () B)	(D (O) () (D D)
r	Q	R	$P \lor (Q \land R)$	$(P \lor Q) \land (P \lor R)$	$\mathbf{r} \vee (\mathbf{Q} \Rightarrow \mathbf{K})$	$(P \lor Q) \Rightarrow (P \lor R)$	r∨(Q⇔K)	$(P \lor Q) \Leftrightarrow (P \lor R)$
VERO	VERO	VERO	VERO	VERO	VERO	VERO	VERO	VERO
VERO	FALSO	VERO	VERO	VERO	VERO	VERO	VERO	VERO
FALSO	VERO	VERO	VERO	VERO	VERO	VERO	VERO	VERO
FALSO	FALSO	VERO	FALSO	FALSO	VERO	VERO	FALSO	FALSO
VERO	VERO	FALSO	VERO	VERO	VERO	VERO	VERO	VERO
VERO	FALSO	FALSO	VERO	VERO	VERO	VERO	VERO	VERO
FALSO	VERO	FALSO	FALSO	FALSO	FALSO	FALSO	FALSO	FALSO
FALSO	FALSO	FALSO	FALSO	FALSO	VERO	VERO	VERO	VERO

P	Q	R	P v (Q AUT R)	$(P \lor Q) AUT (P \lor R)$
VERO	VERO	VERO	VERO	FALSO
VERO	FALSO	VERO	VERO	FALSO
FALSO	VERO	VERO	FALSO	FALSO
FALSO	FALSO	VERO	VERO	VERO
VERO	VERO	FALSO	VERO	FALSO
VERO	FALSO	FALSO	VERO	FALSO
FALSO	VERO	FALSO	VERO	VERO
FALSO	FALSO	FALSO	FALSO	FALSO

37. Stabilire rispetto a quali delle rimanenti operazioni logiche la disgiunzione esclusiva è distributiva.

Nessuna

P	Q	R	P AUT (Q v R)	(P AUT Q) ∨ (P AUT R)	P AUT (Q∧R)	$(P AUT Q) \land (P AUT R)$
VERO	VERO	VERO	FALSO	FALSO	FALSO	FALSO
VERO	FALSO	VERO	FALSO	VERO	VERO	FALSO
FALSO	VERO	VERO	VERO	VERO	VERO	VERO
FALSO	FALSO	VERO	VERO	VERO	FALSO	FALSO
VERO	VERO	FALSO	FALSO	VERO	VERO	FALSO
VERO	FALSO	FALSO	VERO	VERO	VERO	VERO
FALSO	VERO	FALSO	VERO	VERO	FALSO	FALSO
FALSO	FALSO	FALSO	FALSO	FALSO	FALSO	FALSO

P	Q	R	$P AUT (Q \Rightarrow R)$	$(P AUT Q) \Rightarrow (P AUT R)$	P AUT (Q⇔R)	(P AUT Q) ⇔ (P AUT R)
VERO	VERO	VERO	FALSO	VERO	FALSO	VERO
VERO	FALSO	VERO	FALSO	FALSO	VERO	FALSO
FALSO	VERO	VERO	VERO	VERO	VERO	VERO
FALSO	FALSO	VERO	VERO	VERO	FALSO	FALSO
VERO	VERO	FALSO	VERO	VERO	VERO	FALSO
VERO	FALSO	FALSO	FALSO	VERO	FALSO	VERO
FALSO	VERO	FALSO	FALSO	FALSO	FALSO	FALSO
FALSO	FALSO	FALSO	VERO	VERO	VERO	VERO

38. Stabilire rispetto a quali delle rimanenti operazioni logiche l'implicazione materiale è distributiva.

Tutte tranne la disgiunzione esclusiva

P	Q	R	$P \Rightarrow (Q \lor R)$	$(P \Rightarrow Q) \lor (P \Rightarrow R)$	$P \Rightarrow (Q \land R)$	$(P \Rightarrow Q) \land (P \Rightarrow R)$	$P \Rightarrow (Q \Leftrightarrow R)$	$(P \Rightarrow Q) \Leftrightarrow (P \Rightarrow R)$
VERO	VERO	VERO	VERO	VERO	VERO	VERO	VERO	VERO
VERO	FALSO	VERO	VERO	VERO	FALSO	FALSO	FALSO	FALSO
FALSO	VERO	VERO	VERO	VERO	VERO	VERO	VERO	VERO
FALSO	FALSO	VERO	VERO	VERO	VERO	VERO	VERO	VERO
VERO	VERO	FALSO	VERO	VERO	FALSO	FALSO	FALSO	FALSO
VERO	FALSO	FALSO	FALSO	FALSO	FALSO	FALSO	VERO	VERO
FALSO	VERO	FALSO	VERO	VERO	VERO	VERO	VERO	VERO
FALSO	FALSO	FALSO	VERO	VERO	VERO	VERO	VERO	VERO

P	Q	R	$P \Rightarrow (Q \text{ AUT } R)$	$(P \Rightarrow Q) \text{ AUT } (P \Rightarrow R)$
VERO	VERO	VERO	FALSO	FALSO
VERO	FALSO	VERO	VERO	VERO
FALSO	VERO	VERO	VERO	FALSO
FALSO	FALSO	VERO	VERO	FALSO
VERO	VERO	FALSO	VERO	VERO
VERO	FALSO	FALSO	FALSO	FALSO
FALSO	VERO	FALSO	VERO	FALSO
FALSO	FALSO	FALSO	VERO	FALSO

39. Stabilire rispetto a quali delle rimanenti operazioni logiche la coimplicazione è distributiva. Nessuna

P	Q	R	$P \Leftrightarrow (Q \vee R)$	$(P \Leftrightarrow Q) \vee (P \Leftrightarrow R)$	$P \Leftrightarrow (Q \wedge R)$	$(P \Leftrightarrow Q) \wedge (P \Leftrightarrow R)$
VERO	VERO	VERO	VERO	VERO	VERO	VERO
VERO	FALSO	VERO	VERO	VERO	FALSO	FALSO
FALSO	VERO	VERO	FALSO	FALSO	FALSO	FALSO
FALSO	FALSO	VERO	FALSO	VERO	VERO	FALSO
VERO	VERO	FALSO	VERO	VERO	FALSO	FALSO
VERO	FALSO	FALSO	FALSO	FALSO	FALSO	FALSO
FALSO	VERO	FALSO	FALSO	VERO	VERO	FALSO
FALSO	FALSO	FALSO	VERO	VERO	VERO	VERO

P	Q	R	$P \Leftrightarrow (Q \Rightarrow R)$	$(P \Leftrightarrow Q) \Rightarrow (P \Leftrightarrow R)$	P⇔(Q AUT R)	$(P \Leftrightarrow Q) AUT (P \Leftrightarrow R)$
VERO	VERO	VERO	VERO	VERO	FALSO	FALSO
VERO	FALSO	VERO	VERO	VERO	VERO	VERO
FALSO	VERO	VERO	FALSO	VERO	VERO	FALSO
FALSO	FALSO	VERO	FALSO	FALSO	FALSO	VERO
VERO	VERO	FALSO	FALSO	FALSO	VERO	VERO
VERO	FALSO	FALSO	VERO	VERO	FALSO	FALSO
FALSO	VERO	FALSO	VERO	VERO	FALSO	VERO
FALSO	FALSO	FALSO	FALSO	VERO	VERO	FALSO

Strutture algebriche

Stabilire quali fra le seguenti operazioni sono interne nell'insieme su cui sono definite. Per quelle che non lo sono fornire un controesempio.

- 1. Moltiplicazione nell'insieme \mathbb{N}_{p} dei numeri naturali pari
 - Sì: $2n \cdot 2m = 2 \cdot (2mn)$
- 2. Somma nell'insieme dei divisori di 3

No, per esempio: 1 + 3 = 4, non è un divisore di 3

3. Somma nell'insieme dei numeri naturali minori di 123

No, per esempio: 2 + 122 > 123

4. a) Somma nell'insieme dei multipli di 18; b) Sottrazione in $\ensuremath{\mathbb{Z}}$

a) Sì: 18a + 18b = 18(a + b); b) Sì: a - b è intero se $a \in b$ lo sono

5. Moltiplicazione nell'insieme \mathbb{R}^- dei numeri reali negativi

No, per esempio: $(-2) \cdot (-3) \notin \mathbb{R}^{-}$

6. Divisione nell'insieme \mathbb{N}_n dei numeri pari

No, per esempio: $8:6 \notin \mathbb{N}_{p} = \{2; 4; 6; ...\}$

7. a) Divisione in \mathbb{Q} ; b) Elevamento a potenza in \mathbb{Z}

a) No, per esempio: $7:0 \notin \mathbb{Q}$; b) No, per esempio: $2^{-1} = \frac{1}{2} \notin \mathbb{Z}$

8. Elevamento a potenza nell'insieme \mathbb{N}_d dei numeri naturali dispari

Sì: $(2n+1)^{2m+1}$ è un numero dispari

9. Sottrazione nell'insieme \mathbb{Z}_n dei numeri interi pari

Sì 2n - 2m = 2(n - m)

10. Sottrazione nell'insieme \mathbb{Z}_d dei numeri interi dispari

No, per esempio: $3 - 3 = 0 \notin \mathbb{Z}_d$

11. Somma nell'insieme P dei numeri primi

No, per esempio: $3 + 7 = 10 \notin \mathbb{P}$

12. Moltiplicazione nell'insieme dei numeri composti (cioè non primi e maggiori di 1)

Sì: $a \cdot b$ è un numero composto, dato che nessuno dei due fattori è uguale a 1

13. a) Moltiplicazione nell'insieme {-1; 1}; b) Somma nell'insieme {-1; 0; 1}

a) Sì:
$$(-1) \cdot (-1) = 1$$
; $(-1) \cdot 1 = -1$; $1 \cdot 1 = 1$; b) Sì: $-1 + (-1) = 0$; $-1 + 0 = -1$; $-1 + 1 = 0$; $0 + 1 = 1$

14. Somma nell'insieme $\mathbb{Z}_6 = \{[0], [1], [2], [3], [4], [5]\}$

Si:
$$[0] + [n] = [n]$$
; $[1] + [1] = [2]$; $[1] + [1] = [3]$; ...; $[1] + [4] = [5]$; $[1] + [5] = [0]$; $[2] + [2] = [4]$; $[2] + [3] = [5]$; $[2] + [4] = [0]$; $[2] + [5] = [1]$; $[3] + [3] = [0]$; $[3] + [4] = [1]$; $[3] + [5] = [2]$; $[4] + [4] = [2]$; $[4] + [5] = [3]$; $[5] + [5] = [4]$

15. Unione nell'insieme delle parti di {1; 2; 3; ...; 1000}

Sì: L'unione di due sottoinsiemi di qualsiasi insieme è un sottoinsieme dello stesso insieme

16. Intersezione nell'insieme delle parti di {1; 2; 3; ...; 1000}

Sì: L'intersezione di due sottoinsiemi di qualsiasi insieme è un sottoinsieme dello stesso insieme

17. Intersezione nell'insieme {{1}; {1; 2}; {1; 3}}

Si:
$$\{1\} \cap \{1; 2\} = \{1\}; \{1\} \cap \{1; 3\} = \{1\}; \{1; 2\} \cap \{1; 3\} = \{1\}$$

18. Differenza nell'insieme degli insiemi di cardinalità finita dispari

No, per esempio: $\{1; 2; 3\} \setminus \{1\} = \{2; 3\}$

19. Differenza simmetrica nell'insieme delle parti di $A = \{1; 2; 3\}$

Sì: Differenza simmetrica di due sottoinsiemi di qualsiasi insieme è un sottoinsieme dello stesso insieme

20. Disgiunzione inclusiva nell'insieme delle proposizioni logiche contraddittorie

Sì: Falso aut Falso è Falso

21. Disgiunzione esclusiva nell'insieme delle proposizioni logiche tautologiche

No, la disgiunzione esclusiva di due proposizione entrambe vere è una proposizione falsa

22. Prodotto nell'insieme $\mathbb{Z}_5 = \{[0]; [1]; [2]; [3]; [4]\}, \text{ con } [a] \times [b] = [a \cdot b]$

Sì:
$$[0] \times [n] = [0]$$
; $[1] \times [n] = [n]$; $[2] \times [2] = [4]$; $[2] \times [3] = [1]$; $[2] \times [4] = [3]$; $[3] \times [3] = [4]$; $[3] \times [4] = [2]$; $[4] \times [4] = [1]$

23. Prodotto nell'insieme dei multipli di 5

Sì:
$$5n \cdot 5m = 5 \cdot (5mn)$$

24. Determinare quali delle quattro operazioni aritmetiche elementari sono chiuse nell'insieme dei quadrati perfetti: $\{1; 4; 9; 16; 25; ...n^2; ...\}$

Solo la moltiplicazione: $m^2 \cdot n^2 = (mn)^2$. Mentre 4 + 9 = 13; 9 - 4 = 5; 9/4

Determinare l'eventuale elemento neutro delle seguenti operazioni binarie

25. Unione nell'insieme delle parti di {1, 2, 3}

 $A \cup \emptyset = A$

26. Intersezione nell'insieme delle parti di {1, 2, 3}

 $\{1\} \cap \{1, 2, 3\} = \{1\}; \{2\} \cap \{1, 2, 3\} = \{2\}; \{3\} \cap \{1, 2, 3\} = \{3\}; \{1; 2\} \cap \{1, 2, 3\} = \{1; 2\}; \{1; 3\} \cap \{1, 2, 3\} = \{1; 3\}; \{2; 3\} \cap \{1, 2, 3\} = \{2; 3\}$

27. Unione in {{1}, {1, 2}, {1, 3}, {1, 4}}

 $\{1,2\} \cup \{1\} = \{1,2\}; \{1,3\} \cup \{1\} = \{1,3\}; \{1,4\} \cup \{1\} = \{1,4\}$

28. Differenza simmetrica nell'insieme delle parti di {1, 2, 3, 4}

 $A \Delta \varnothing = A$

29. Congiunzione nell'insieme delle proposizioni logiche

Tautologia: $V \wedge V = V$; $F \wedge V = F$

30. Disgiunzione inclusiva nell'insieme delle proposizioni logiche

Contraddizione: $V \vee F = V$; $F \vee F = F$

31. Disgiunzione esclusiva nell'insieme delle proposizioni logiche

Contraddizione: V aut F = V; F aut F = F

- 32. a) Elevamento a potenza in \mathbb{R} ; b) $a * b = 2 a \cdot b$ in $\mathbb{R} \setminus \{0\}$
 - a) 1 elemento neutro destro: $a^1 = a$; $x^y = y$ non ha soluzioni per ogni x;
 - b) $a * u = a \Rightarrow 2au = a \Rightarrow u = \frac{1}{2}$; $u * b = b \Rightarrow 2ub = b \Rightarrow u = \frac{1}{2}$
- 33. a) $a \lor b = (a+1) \cdot (b+1) 1$ in \mathbb{R} ; b) $a \lor b = a+b-4$ in \mathbb{R}
 - a) $a \lor u = a \Rightarrow (a+1) \cdot (u+1) 1 = a \Rightarrow au + a + u + 1 1 = a \Rightarrow au + u = 0 \Rightarrow u(a+1) = 0 \Rightarrow u = 0$
 - 0; $u \triangleleft a = a \Rightarrow (u+1) \cdot (a+1) 1 = a \Rightarrow u(a+1) = 0 \Rightarrow u = 0$;
 - b) $a u = a \Rightarrow a + u 4 = a \Rightarrow u = 4$; $u a = a \Rightarrow u + a 4 = a \Rightarrow u = 4$;
- **34.** a) $a + b = \frac{a+1}{b-1}$ in $\mathbb{R} \setminus \{1\}$; b) $a + b = \frac{a}{b} 4$ in $\mathbb{R} \setminus \{0\}$
 - a) $a \wedge u = \frac{a+1}{u-1} = a \Rightarrow a+1 = au a, u \neq 1 \Rightarrow u = \frac{2a+1}{a}$, non c'è elemento neutro;
 - b) $a + u = a \Rightarrow \frac{a}{u} 4 = a \Rightarrow a 4u = a, u \neq 0 \Rightarrow u = 0$, che non è accettabile, quindi non c'è elemento

neutro

35. Massimo fra due numeri nell'insieme dei numeri naturali

Max(a; 1) = a

36. Minimo fra due numeri nell'insieme dei numeri naturali

Non vi è elemento neutro

37. Minimo fra due numeri nell'insieme dei numeri interi negativi

Min(a; -1) = a

I Gruppi

Stabilire che tipo di strutture algebriche sono le seguenti. Con i simboli (+) e (·), indichiamo le consuete operazioni di addizione a moltiplicazione nell'insieme dei numeri reali

- 1. a) (\mathbb{Z},\cdot) ; b) $(\mathbb{Q},+)$; c) (\mathbb{Q},\cdot)
 - a) Vale la proprietà associativa e quella commutativa, ha 1 come elemento neutro, ma un generico intero non ha inverso: Semigruppo abeliano con unità;
 - b) Vale la proprietà associativa e quella commutativa, ha 0 come elemento neutro, un generico razionale ha opposto: Gruppo abeliano;
 - c) Vale la proprietà associativa, e quella commutativa, ha 1 come elemento neutro, ma 0, che è un numero razionale, non ha inverso: Semigruppo abeliano con unità
- 2. a) $(\mathbb{Q}\setminus\{0\},\cdot)$; b) $(\mathbb{R},+)$; c) (\mathbb{R},\cdot)

- a) Vale la proprietà associativa e quella commutativa, ha 1 come elemento neutro, un generico razionale non nullo ha inverso: Gruppo abeliano;
- b) Vale la proprietà associativa e quella commutativa, ha 0 come elemento neutro, un generico reale ha opposto: Gruppo abeliano;
- c) Vale la proprietà associativa e quella commutativa, ha 1 come elemento neutro, 0 non ha inverso: Semigruppo abeliano con unità
- 3. a) $(\{-1; 1\}, \cdot)$; b) $(\{-1; 1\}, +)$; c) $(\{-1; 0; 1\}, \cdot)$
 - a) Vale la proprietà associativa e quella commutativa, ha 1 come elemento neutro, ogni numero è inverso di se stesso: Gruppo abeliano;
 - b) Non è una struttura in quanto l'operazione "+" non è interna all'insieme {-1; 1};
 - c) Vale la proprietà associativa e quella commutativa, ha 1 come elemento neutro, ma 0 non ha inverso: Semigruppo abeliano con unità
- 4. a) ($\{-1; 0; 1\}, +\}$; b) $(\mathbb{Q}^+, +)$; c) $(\mathbb{Z}_d, +)$
 - a) Non è un gruppoide, -1 + (-1) = -2, che non appartiene all'insieme;
 - b) Vale la proprietà associativa e quella commutativa, non ha elemento neutro, perché 0 non è positivo; un razionale positivo non ha opposto positivo: Semigruppo abeliano;
 - c) Non è un gruppoide perché la somma di due numeri dispari è un numero pari
- 5. a) (\mathbb{Q}^+,\cdot) ; b) $(\mathbb{R}\setminus\mathbb{Q},\cdot)$; c) (\mathbb{R}^-,\cdot)
 - a) Vale la proprietà associativa e quella commutativa, ha 1 come elemento neutro, l'inverso di un razionale positivo è un razionale positivo: Gruppo abeliano;
 - b) Non è un gruppoide, p e $\sqrt{2} \cdot \sqrt{8} = 4 \notin \mathbb{R} \setminus \mathbb{Q}$;
 - c) Non è un gruppoide: il prodotto di due numeri negativi non è un numero negativo
- 6. a) (\mathcal{L}, \wedge) ; b) (\mathcal{L}, \vee) ; c) $(\mathcal{L}, \dot{\vee})$
 - a) Vale la proprietà associativa e quella commutativa, ha la tautologia come elemento neutro, ma una generica proposizione logica non ha opposto: Semigruppo abeliano con unità;
 - b) Vale la proprietà associativa e quella commutativa, ha la contraddizione come elemento neutro, ma una generica proposizione logica non ha opposto: Semigruppo abeliano con unità;
 - c) Vale la proprietà associativa e quella commutativa, ha la contraddizione come elemento neutro, una generica proposizione logica ha la sua negazione come opposto: Gruppo abeliano
- 7. a) $(\mathcal{P}(X), \cup)$; b) $(\mathcal{P}(X), \cap)$; c) $(\mathcal{P}(X), \Delta)$; $\mathcal{P}(X)$ è l'insieme delle parti di X
 - a) Vale la proprietà associativa e quella commutativa, ha \emptyset come elemento neutro, un generico insieme non ha opposto: Semigruppo abeliano con unità;
 - b) Vale la proprietà associativa e quella commutativa, ha *X* come elemento neutro, un generico insieme non ha opposto: Semigruppo abeliano con unità;
 - c) Vale la proprietà associativa e quella commutativa, ha \varnothing come elemento neutro, ogni elemento è opposto di se stesso: $Y \triangle Y = \varnothing$: Gruppo abeliano
- 8. a) (\mathbb{N} , max); b) (\mathbb{N} , min); c) (\mathbb{N} , ∞) con $a \propto b = \frac{a+b}{2}$
 - a) Vale la proprietà associativa e quella commutativa, ha 1 come elemento neutro, un generico elemento non ha opposto: Semigruppo abeliano con unità;
 - b) Vale la proprietà associativa e quella commutativa, non ha elemento neutro, un generico elemento non ha opposto: Semigruppo abeliano;
 - c) se a + b è dispari, il risultato non è un numero naturale: Non è un gruppoide
- 9. Insieme dei multipli di 7 rispetto alla moltiplicazione

Vale la proprietà associativa e quella commutativa, non ha elemento neutro: Semigruppo abeliano

- **10. a)** $(\mathbb{Z}_2[x],+)$; **b)** $(\mathbb{R}_2[x],+)$
 - a) Vale la proprietà associativa e quella commutativa, ha il polinomio nullo come elemento neutro, l'opposto di un polinomio è il polinomio con i coefficienti opposti: Gruppo abeliano;
 - b) Vale la proprietà associativa e quella commutativa, ha il polinomio nullo come elemento neutro, l'opposto di un polinomio è il polinomio con i coefficienti opposti: Gruppo abeliano

- 11. a) $(\mathbb{Z}, *)$, con a * b = a + b + 2; b) $(\mathbb{R}[x], \cdot)$; c) $(\{...; 2^{-1}; 2^0; 2^1; ...\}, \cdot)$
 - a) Vale la proprietà associativa e quella commutativa, ha -2 come elemento neutro, $a * u = a \Rightarrow a + u + 2 = a \Rightarrow u = -2$; il simmetrico di a è (-4 a), $a * b = -2 \Rightarrow a + b + 2 = -2 \Rightarrow b = -4 a$: Gruppo abeliano
 - b) Vale la proprietà associativa e quella commutativa, ha il polinomio 1 come elemento neutro; non ogni polinomio ha simmetrico: Semigruppo abeliano con elemento neutro
 - c) $(\{...; 2^{-1}; 2^0; 2^1; ...\}, \cdot)$ Vale la proprietà associativa, $2^n \cdot (2^m \cdot 2^p) = (2^n \cdot 2^m) \cdot 2^p = 2^{n+m+p}$, e quella commutativa, ha 2^0 come elemento neutro, il simmetrico di 2^n è 2^{-n} : Gruppo abeliano
- 12. Insieme dei polinomi non nulli di secondo grado in una incognita a coefficienti numeri reali, rispetto alla moltiplicazione di polinomi

Non è un gruppoide, per esempio $x^2 \cdot x^2 = x^4$, non è un polinomio di secondo grado

13. $(\mathbb{Q} \setminus \{0\}, \blacktriangle)$, con $a \blacktriangle b = \frac{a \cdot b}{k}$, al variare di $k \in \mathbb{R} \setminus \{0\}$

Vale la proprietà associativa e quella commutativa, ha k come elemento neutro, $a \triangleq u = a \Rightarrow \frac{\cancel{a} \cdot u}{k} = \cancel{a} \Rightarrow u = k$, il simmetrico di $a \stackrel{.}{e} \frac{k^2}{a}$, $a \triangleq b = k \Rightarrow \frac{a \cdot b}{k} = k \Rightarrow b = \frac{k^2}{a}$: Gruppo abeliano per ogni $k \neq 0$

14. $(\{1; 2; 100\} \times \{1; 2; 100\}, \clubsuit)$, con $(a, b) \clubsuit (c, d) = (max(a; c), min(b; d))$

Vale la proprietà associativa e quella commutativa, ha (1; 100) come elemento neutro, $(a, b) \triangleq (u, u') = (a, b) \Rightarrow (max(a; u), min(b; u')) = (a, b) \Rightarrow u = 1; u' = 100;$ non ogni coppia ha simmetrico: Semi-gruppo abeliano con unità

Completare le seguenti tabelle operatorie in modo che rappresentino tabelle di gruppi abeliani.

•	me te seguent								
	\oplus	a	b	c					
	a	a	b	c					
	b	b							
	c	c							

	0	а	b	c
	а	b	c	а
	b	а		b
)	c	а		C
•		_		

a contract of			
0	a	b	c
а	a	a	a
b	b		
c	b		

- 15. a)
 - a) Da quanto sistemato l'elemento neutro deve essere a; affinché valga la proprietà associativa deve essere $a \oplus (b \oplus c) = (a \oplus b) \oplus c \Rightarrow b \oplus c = b \oplus c$. Da $a \oplus (b \oplus b) = (a \oplus b) \oplus b \Rightarrow b \oplus b = a \oplus b \Rightarrow b \oplus b = b$; e da $a \oplus (c \oplus c) = (a \oplus c) \oplus c \Rightarrow c \oplus c = a \oplus c \Rightarrow c \oplus c = c$. Quindi ogni elemento deve essere simmetrico di se stesso. Adesso: $b \oplus (b \oplus c) = (b \oplus b) \oplus c \Rightarrow b \oplus (b \oplus c) = b \oplus c \Rightarrow b = a$, che non è possibile. Quindi la tabella non possiamo riempirla in modo che rappresenti un gruppo abeliano
 - b) Non possiamo riempirla in modo che rappresenti un gruppo abeliano perché si ha: $a \oplus b = c \neq a = b \oplus a$
 - c) Dai valori immessi viene fuori che non vi è elemento neutro perché $a \oplus a = a$, ma anche $a \oplus b = a$, mentre dovrebbe essere $a \oplus b = b$.

٠.	ditie do vicebe est					
	\oplus	a	b	c	d	
	a	а	b	C	d	
	b	b	c	d	a	
	c	C				
	d	d			c	

	`	•		
\oplus	a	b	c	d
a	b	c		
b	c			
\boldsymbol{c}				
d				d

- 16. a
 - a) L'elemento neutro è a; per la commutatività deve essere:

\oplus	a	b	c	d
a	а	b	С	d
b	b	С	d	а
c	С	d		
d	d	a		

Il simmetrico di c deve essere c stesso, $c \oplus c = a$; mentre per $c \oplus d = d \oplus c$ usiamo la proprietà associativa: $c \oplus (c \oplus d) = (c \oplus c) \oplus d \Rightarrow c \oplus (c \oplus d) = a \oplus d = d \Rightarrow c \oplus d = b$. Allo stesso modo determiniamo $d \oplus d$: $c \oplus (d \oplus d) = (c \oplus d) \oplus d \Rightarrow c \oplus (d \oplus d) = b \oplus d = a \Rightarrow d \oplus d = c$. Infine ecco la tabella corretta.

Ф	a	b	c	d
a	а	b	С	d
b	b	С	d	а
c	С	d	а	b
d	d	а	b	С

b) L'elemento neutro è d. Quindi deve essere

\oplus	a	b	c	d
a	b	С		a
b	С			b
c				C
d	a	b	С	d

Da cui a e c simmetrici, e b è simmetrico di se stesso:

Ф	a	b	c	d
a	b	С	d	a
b	С	d		b
c	d			С
d	а	b	С	d

Infine: $b \oplus c = c \oplus b = a$ e $c \oplus c = b$.

Ф	а	b	c	d
а	b	С	d	а
b	С	d	а	b
c	d	а	b	С
d	а	b	С	d

17. Costruire la tabella operatoria del gruppo di sostituzione su due elementi: {1; 2}.

0	(12)	(12)
	(12)	(21)
(12)	(12)	(12)
$\lfloor 12 \rfloor$	(12)	(21)
(12)	(12)	(12)
(21)	(21)	(12)

18. Costruire la tabella operatoria del gruppo di sostituzione su tre elementi: {1; 2; 3}

0	(123)	(123)	(123)	(123)	(123)	(123)
	(123)	(132)	(213)	(231)	(312)	(321)
(123)	(123)	(123)	(123)	(123)	(123)	(123)
(123)	(123)	(132)	(213)	(231)	(312)	(321)
(123)	(123)	(123)	(123)	(123)	(123)	(123)
(132)	(132)	(123)	(231)	(213)	(321)	(312)
(123)	(123)	(123)	(123)	(123)	(123)	(123)
213	(213)	(312)	(123)	(321)	(132)	(231)
(123)	(123)	(123)	(123)	(123)	(123)	(123)
231	(231)	(312)	(132)	(321)	(123)	(213)
(123)	(123)	(123)	(123)	(123)	(123)	(123)
(312)	(312)	(213)	(321)	(123)	(231)	$\lfloor 132 \rfloor$
(123)	(123)	(123)	(123)	(123)	(123)	(123)
(321)	(321)	(231)	(312)	$\lfloor 132 \rfloor$	(213)	$\lfloor 123 \rfloor$

- 19. Determinare tutti gli eventuali sottogruppi propri del Gruppo delle sostituzioni su: $\{1; 2\}$. Un sottogruppo deve contenere l'elemento neutro e le coppie di elementi simmetrici, pertanto abbiamo solo sottogruppi impropri, ossia $\{ \begin{pmatrix} 12 \\ 12 \end{pmatrix} \}$ e lo stesso gruppo.
- 20. Determinare tutti gli eventuali sottogruppi propri del Gruppo delle sostituzioni su: $\{1; 2; 3\}$. Tenuto conto della tabella operatoria, esercizio 18, abbiamo tre sottogruppi con 2 elementi: $\left\{\binom{123}{123}, \binom{123}{132}\right\}, \left\{\binom{123}{123}, \binom{123}{213}\right\}, \left\{\binom{123}{123}, \binom{123}{321}\right\}$, che sono quelli che contengono l'elemento neutro e gli elementi simmetrici di se stessi; con tre elementi abbiamo quelli che oltre l'elemento neutro hanno le coppie di elementi fra loro simmetrici: $\left\{\binom{123}{123}, \binom{123}{231}, \binom{123}{312}\right\}$. Non ci sono altri sottogruppi propri, perché per esempio se consideriamo $G_4 = \left\{\binom{123}{123}, \binom{123}{132}, \binom{123}{213}, \binom{123}{321}\right\}$, che contiene i tre elementi autosimmetrici, non rappresenta un gruppo perché per esempio $\binom{123}{132} \circ \binom{123}{213} = \binom{123}{231} \notin G_4$. Stesso discorso può farsi per gli altri sottoinsiemi di ordine 4 e per quelli di ordine 5.

Anelli, Corpi e Campi

Stabilire che tipo di strutture algebriche sono le seguenti. Con i simboli +e, indichiamo le consuete operazioni di addizione e prodotto nell'insieme dei numeri reali. $\mathcal{P}(X)$ è l'insieme delle parti di X.

- 1. **a)** $(\mathbb{Q}^+,+,\cdot)$; **b)** $(\mathbb{Z}_2[x],+,\cdot)$
 - a) Non è un anello perché mancano gli elementi simmetrici della somma; b) È un anello, anzi un dominio di integrità perché non ha divisori dello zero.
- 2. a) $(\mathcal{M}_6, +, \cdot)$ (Insieme dei multipli interi di 6); b) $(\mathbb{Z}_7, +, \cdot)$; c) $(\mathbb{Z}_8, +, \cdot)$
 - a) Anello abeliano, non dominio di integrità, perché $2m \cdot 3n = 0$, con $mn \neq 0$;

- b) È un Campo perché è un corpo commutativo e non ha divisori dello zero, dato che 7 è un numero primo e quindi non esistono due numeri diversi da 1 e minori di 6, il cui prodotto sia 7 o un suo multiplo. c) Anello abeliano, non è un corpo perché ha divisori dello zero: $2m \cdot 4n = 0$
- 3. a) $(\{1; 2; 3; 4; 5\}, max, min); b) (\mathcal{P}(X), \cup, \cap)$
 - a) Non è un anello perché non vi sono i simmetrici. Gli elementi neutri sono rispettivamente 1 e 5, ma max(2; x) = 1 non ha soluzioni, così come min(2; 5) = 5;
 - b) Non è un anello, perché rispetto all'unione è un semigruppo, vedi es. 7a
- 4. a) $(\mathcal{P}(X), \Delta, \cap)$; b) $(\mathcal{L}, \dot{\vee}, \wedge)$
 - a) Anello commutativo con unità, dato che rispetto a Δ è gruppo abeliano, vedi es. 7c, e rispetto a \cap è semigruppo abeliano con unità, vedi es. 7b;
 - b) Anello commutativo con unità, dato che rispetto a ∨ è gruppo abeliano, vedi es. 6c, e rispetto a ∧ è semigruppo abeliano con unità, vedi es. 6a

Isomorfismi

1. Verificare che $(\mathbb{Z}_2,+)$ è isomorfo al gruppo delle sostituzioni su due elementi.

Abbiamo che in entrambi i casi le tabelle operatorie sono formalmente identiche alla seguente, in cui u rappresenta l'unità e x l'altro elemento.

\oplus	и	х
и	и	x
х	х	и

2. Verificare che $(\mathbb{Z}_6,+)$ è isomorfo al gruppo delle sostituzioni su tre elementi.

La tabella operatoria è formalmente identica alla seguente, in cui c e c' sono fra loro simmetrici

\oplus	и	а	b	С	c'	d
и	и	а	b	С	c'	d
a	а	и	С	и	d	c'
b	b	c'	и	d	а	С
С	С	c'	а	d	и	b
c'	c'	b	d	и	С	а
d	d	С	c'	а	b	и

- 3. Dati due gruppi di ordine 2, possiamo dire che sono sempre isomorfi? Giustificare la risposta. Sì perché la tabella contiene solo l'elemento unità e l'altro elemento che è simmetrico di se stesso.
- 4. Abbiamo visto che $\mathbb{Z}_3 = (\{[0], [1], [2]\} \text{ e } (\{R_0, R_{120}, R_{240}\}, ^\circ) \text{ sono fra loro isomorfi. Consideriamo la relazione binaria } \{[0] \to R_0, [1] \to R_{120}, [2] \to R_{240}\}$. Verificare che, comunque si considerino a, $b \in \mathbb{Z}_2$ la relazione precedente associa alla classe [a+b] la composizione delle rotazioni associate ai singoli elementi.

Basta considerare le relative tabelle operatorie, costruite nel box lavoriamo insieme

La sfida

1. Sia (A, *) un gruppoide e $B \subset A$, possiamo sempre dire che anche (B, *) è un gruppoide? Giustificare la risposta.

No, per esempio: (N, +) è un gruppoide, $(\{1, 2\}, +)$ non lo è

2. Sia (A, *) un gruppoide e $A \subset B$, possiamo sempre dire che anche (B, *) è un gruppoide? Giustificare la risposta.

No, per esempio: ({0; 1}, +) è un gruppoide, ({-2; 0; 1}, +) non lo è

Stabilire che tipo di strutture algebriche sono le seguenti. Con i simboli +e, indichiamo le consuete operazioni di addizione a moltiplicazione nell'insieme dei numeri reali.

3. Insieme delle frazioni algebriche rapporto di polinomi di primo grado non nulli a coefficienti numeri reali, espressioni del tipo $\frac{ax+b}{cx+d}$ con $a \ne 0$ e $c \ne 0$, rispetto alla moltiplicazione.

Gruppo abeliano, con elemento neutro 1, il simmetrico di $\frac{ax+b}{cx+d}$ è $\frac{cx+d}{ax+b}$. Verifichiamo la validità

della proprietà associativa e di quella commutativa:

$$\frac{ax+b}{cx+d} \cdot \left(\frac{mx+n}{px+q} \cdot \frac{tx+w}{sx+z}\right) = \frac{(ax+b) \cdot (mx+n) \cdot (tx+w)}{(cx+d) \cdot (px+q) \cdot (sx+z)} = \left(\frac{ax+b}{cx+d} \cdot \frac{mx+n}{px+q}\right) \cdot \frac{tx+w}{sx+z};$$

$$\frac{ax+b}{cx+d} \cdot \frac{mx+n}{px+q} = \frac{(ax+b) \cdot (mx+n)}{(cx+d) \cdot (px+q)} = \frac{mx+n}{px+q} \cdot \frac{ax+b}{cx+d}$$

4. Per quali valori reali di k la struttura (\mathbb{Z} , *, •), con a * b = a + b + 7 e $a • b = a \cdot b + k$ è un anello?

Verifica facilmente le proprietà associative e commutative. Determiniamo gli elementi neutri.

$$a * u = a \Rightarrow a + u + 7 = a \Rightarrow u + 7 = 0 \Rightarrow u = -7; a \bullet u = a \Rightarrow a \cdot u + k = a \Rightarrow u = \frac{a - k}{a} = 1 - \frac{k}{a}$$
, che

rappresenta un valore costante, 1, solo se k = 0

5. Consideriamo due gruppi (G, \oplus) e (H, \otimes) fra loro isomorfi. Costruiamo una funzione $f: G \to H$, che associa a ogni elemento di G quello che nella tabella operatoria di H si *comporta* allo stesso modo. Dimostrare che quali che siano gli elementi $a, b \in G$, vale l'uguaglianza: $f(a \oplus b) = f(a) \otimes f(b)$.

Lavoriamo per semplicità su gruppi di ordine 3, con un elemento unità e due elementi reciprocamente

\oplus	и	а	a'	\otimes	u'	h	h'
и	и	а	a'	u'	u'	h	h'
а	а	а	и	h	h	h	u'
a'	a'	и		h'	h'	u'	h'

simmetrici:

Avremo:
$$f(u) = u'$$
; $f(a) = h$; $f(a') = h'$. Adesso

$$f(u \oplus a) = f(a) = h$$
; $= f(u) \otimes f(a) = u' \otimes h = h$;

$$f(u \oplus a') = f(a') = h'; = f(u) \otimes f(a') = u' \otimes h' = h';$$

$$f(a \oplus a') = f(u) = u'; = f(a) \otimes f(a') = h \otimes h' = u';$$

$$f(a \oplus a) = f(a) = h$$
; $= f(a) \otimes f(a) = h \otimes h = h$;

$$f(a' \oplus a') = f(a') = h'; = f(a') \otimes f(a') = h' \otimes h' = h';$$

$$f(u \oplus u) = f(u) = u'; = f(u) \otimes f(u) = u' \otimes u' = u';$$

- 6. Risolvere l'equazione $(3, 2) \Phi (0, 0) = (x, y) \Phi (3, 2)$, con $(a, b) \Phi (c, d) = (a c, b + d)$, in \mathbb{R}^2 . $(3, 2) \Phi (0, 0) = (x, y) \Phi (3, 2) \Rightarrow (3 0, 2 + 0) = (x 3, y + 2) \Rightarrow (3, 2) = (x 3, y + 2) \Rightarrow x 3 = 3, y + 2 = 2 \Rightarrow (x, y) = (6, 0)$
- 7. Data l'operazione $a \diamond b = a^b$, provare che $(a \diamond b)^n = a \diamond (b \cdot n)$. $(a \diamond b)^n = (a^b)^n = a^{b \cdot n} = a \diamond (b \cdot n)$
- 8. Sono dati due numeri naturali a e b. Quale delle seguenti affermazioni è sempre verificata? Fornire dei contro esempi per ciascuna delle affermazioni false.

A è falsa: 3 + 5 è pari, $3 \cdot 5$, no; B è falsa: 2 + 4 è pari, $2 \cdot 4$, pure; C è vera, se a + b è dispari i due numeri non sono entrambi pari o entrambi dispari, pertanto il loro prodotto ha un fattore pari e uno dispari, ed è pari; D è falsa: 3 + 4 è dispari, $3 \cdot 4$, no; E è falsa perché C è vera

A) Se a + b è pari allora $a \cdot b$ è pari B) Se a + b è pari allora $a \cdot b$ è dispari C) Se a + b è dispari allora $a \cdot b$ è pari D) Se a + b è dispari allora $a \cdot b$ è dispari E) Nessuna delle precedenti

Quesiti assegnati in gare nazionali e internazionali

- 1. (MT1995) Se $a \Delta b = b^a + a^b$, calcolare (2 Δ 3) Δ 2. (2 Δ 3) Δ 2 = (3² + 2³) Δ 2 = 17 Δ 2 = 2¹⁷ + 17² = 131361
- 2. (HSMC 2005) Se $a \otimes b = ab 3a + 1$, determinare $5 \otimes (7 \otimes 5)$. $5 \otimes (7 \otimes 5) = 5 \otimes (7 \cdot 5 - 3 \cdot 7 + 1) = 5 \otimes 15 = 5 \cdot 15 - 3 \cdot 5 + 1 = 61$
- 3. (HSMC 2007) Se $x + y = x y^2$ e $x + y = x^3 + xy + y^2$, determinare 2 + (3 + (-2)). $2 + (3 + (-2)) = 2 + (3^3 + 3 \cdot (-2) + (-2)^2) = 2 + 25 = 2 - 25^2 = -623$
- 4. **(V 2007) Definiamo l'operazione ternaria:** $[x, y, z] = \frac{xy + yz + zx}{x^2 + y^2 + z^2}$. Calcola [3, 2, -4].

$$[3,2,-4] = \frac{3 \cdot 2 + 2 \cdot (-4) + (-4) \cdot 3}{3^2 + 2^2 + (-4)^2} = \frac{6 - 8 - 12}{9 + 4 + 16} = \frac{-14}{29}$$

- 5. (L 2008) Se $a \Leftrightarrow b = a^{b-1}$ per a, b > 0, calcolare $3 \Leftrightarrow (2 \Leftrightarrow 3)$. $3 \Leftrightarrow (2 \Leftrightarrow 3) = 3 \Leftrightarrow 2^{3-1} = 3 \Leftrightarrow 4 = 3^{3-1} = 27$
- 6. (AL 2009) Se $a \otimes b = ab + 1$ e $a \oplus b = a + b$, calcolare $4 \otimes [(6 \oplus 8) \oplus (3 \otimes 5)]$. $4 \otimes [(6 \oplus 8) \oplus (3 \otimes 5)] = 4 \otimes [(6 + 8) \oplus (3 \cdot 5 + 1)] = 4 \otimes [14 \oplus 16] = 4 \otimes (14 + 16) = 4 \otimes 30 = 4 \cdot 30 + 1 = 121$
- 7. (NC 2009) L'operazione $a \otimes b = \sqrt{a+b}$ è definita sui numeri reali positivi. Quali delle seguenti affermazioni sono vere? I. Ha sempre risultato positivo II. È commutativa III. È associativa. A) solo I B) solo II C) solo I e II D) solo I e II e) I, II e III Certamente è sempre positiva ed è commutativa;

Non è associativa:
$$a \otimes (b \otimes c) = a \otimes \sqrt{b+c} = \sqrt{a+\sqrt{b+c}}; (a \otimes b) \otimes c = \sqrt{a+b} \otimes c = \sqrt{\sqrt{a+b}+c}$$
, per esempio $1 \otimes (2 \otimes 3) = \sqrt{1+\sqrt{2}+3} = \sqrt{1+\sqrt{5}}; (1 \otimes 2) \otimes 3 = \sqrt{\sqrt{1+2}+3} = \sqrt{3+\sqrt{3}}$. Risposta D

- 8. (HSMC 2011) Sia l'operazione \otimes definita da $a \otimes b = a^2 + 3^b$. Calcolare $(2 \otimes 0) \otimes (0 \otimes 1)$. $(2 \otimes 0) \otimes (0 \otimes 1) = (2^2 + 3^0) \otimes (0^2 + 3^1) = 5 \otimes 3 = (5^2 + 3^3) = 52$
- 9. (HSMC 2001) Given that $a \otimes b = \frac{a^2 + b}{2}$. What is the value of $5 \otimes 3$? $5 \otimes 3 = \frac{5^2 + 3}{2} = \frac{28}{2} = 14$
- 10. (NC 2002) Define the operation \otimes as $x \otimes y = xy(x y)$. Find x where $x \neq 0$ and $x \otimes 7 = x$. A) 8/7 B) 50/7 C) 7 D) 1/7 E) equation has no solution $x \otimes 7 = x \Rightarrow 7x(x - 7) = x \Rightarrow 7(x - 7) = 1 \Rightarrow 7x - 49 = 1 \Rightarrow 7x = 50 \Rightarrow x = 50/7$. Risposta B
- 11. (V 2005) Define the operation \oplus by $a \oplus b = \frac{a-b}{a+b}$. Find all values of c such that $(1 \oplus 2) \oplus c = 1 \oplus (2 \oplus c)$.

$$(1 \oplus 2) \oplus c = 1 \oplus (2 \oplus c) \Rightarrow \left(\frac{1-2}{1+2}\right) \oplus c = 1 \oplus \left(\frac{2-c}{2+c}\right) \Rightarrow -\frac{1}{3} \oplus c = 1 \oplus \left(\frac{2-c}{2+c}\right) \Rightarrow$$

$$\Rightarrow \frac{-\frac{1}{3} - c}{-\frac{1}{3} + c} = \frac{1 - \frac{2-c}{2+c}}{1 + \frac{2-c}{2+c}} \Rightarrow \frac{-1-3c}{-1+3c} = \frac{\cancel{2}c}{\cancel{4}^2} \Rightarrow -2 - 6c = -c + 3c^2 \Rightarrow 3c^2 + 5c + 2 = 0 \Rightarrow = \frac{-5 \pm \sqrt{25 - 24}}{6} = \frac{-1}{3}$$

12. (HSMC 2008) The operation * is defined by $a*b = \frac{3a-2b}{2ab}$ for all a, $b \ne 0$. If $x*y = \frac{1}{4}$ and y*x = -1, find x*x.

$$x * y = \frac{3x - 2y}{2xy} = \frac{1}{4}, y * x = \frac{3y - 2x}{2yx} = -1; x * x = \frac{3x - 2x}{2x^2} = \frac{1}{2x} \Rightarrow \frac{3x - 2y}{2xy} \cdot \frac{2yx}{3y - 2x} = -\frac{1}{4} \Rightarrow$$
$$\Rightarrow 12x - 8y = 2x - 3y \Rightarrow y = 2x \Rightarrow \frac{3 \cdot 2x - 2x}{2 \cdot 2x \cdot x} = -1 \Rightarrow \frac{4x}{4x^2} = -1 \Rightarrow \frac{1}{x} = -1 \Rightarrow x * x = -\frac{1}{2}$$

13. (AL 2009) Let \otimes be defined by $a \otimes b = a^2 + b$. And let \oplus be defined by $a \oplus b = a - b^2$. What is $(a \oplus b) \otimes b$?

$$(a \oplus b) \otimes b = (a - b^2) \otimes b = (a - b^2)^2 + b = a^2 - 2ab^2 + b^4 + b$$

- 14. (NC 2009) Define the operation * by x * y = 4x 3y + xy, for all real numbers x and y. For how many real numbers y does 3 * y = 12?

 A) 0 B) 1 C) 3 D) 4 E) more than 4 $3*y = 12 \Rightarrow 4 \cdot 3 3y + 3y = 12 \Rightarrow 12 = 12$. È un'identità, quindi infiniti numeri, ossia risposta E
- 15. (MT1994) The binary operation \otimes on whole numbers is defined as $a \otimes b = 2a + 3b$. Compute (3 \otimes 4) \otimes 5.

$$(3 \otimes 4) \otimes 5 = (2 \cdot 3 + 3 \cdot 4) \otimes 5 = 18 \otimes 5 = 2 \cdot 18 + 3 \cdot 5 = 51$$

Quelli che ... vogliono saperne di più

Ordine dei sottogruppi

Determinare tutti gli eventuali sottogruppi propri dei seguenti gruppi

- 1. a) \mathbb{Z}_2 ; b) \mathbb{Z}_3 ; c) \mathbb{Z}_4 ; d) \mathbb{Z}_5 ; e) \mathbb{Z}_6 ; f) \mathbb{Z}_7
 - a) Nessun gruppo di ordine 2 ha sottogruppi propri; b) Per il Teorema di Lagrange non vi sono sottogruppi propri; c) Per il Teorema di Lagrange vi possono essere solo sottogruppi propri di ordine 2, che perciò devono contenere l'elemento neutro e un altro elemento autosimmetrico, l'unica possibilità è perciò {[0], [2]}; d) Per il Teorema di Lagrange non vi sono sottogruppi propri; e) Per il Teorema di Lagrange vi possono essere solo sottogruppi propri di ordine 2 e di ordine 3. I primi devono contenere l'elemento neutro e un altro elemento autosimmetrico, l'unica possibilità è perciò {[0], [3]}. Per gli altri devono contenere l'unità e coppie di elementi uno simmetrico dell'altro, quindi solo {[0], [2], [4]}; f) Per il Teorema di Lagrange non vi sono sottogruppi propri
- 2. $(\mathcal{M}_{24}, +)$ Gruppo additivo dei multipli interi di 24.

Non possiamo applicare il Teorema di Lagrange perché il gruppo non è finito. Tutti i sottogruppi sono ovviamente formati da multipli dello stesso tipo, pertanto devono essere multipli di un divisore proprio di 24, quindi: \mathcal{M}_2 , \mathcal{M}_3 , \mathcal{M}_4 , \mathcal{M}_6 , \mathcal{M}_8 , \mathcal{M}_{12}

Nei seguenti esercizi indichiamo con R_k una rotazione di dato centro, uguale per tutte, di angolo k° .

- 3. a) $\{R_0, R_{90}, R_{180}, R_{270}\}$; b) $\{R_0, R_{60}, R_{120}, ..., R_{300}\}$; c) $\{R_0, R_{45}, R_{90}, ..., R_{315}\}$
 - a) Per il Teorema di Lagrange vi possono essere solo sottogruppi propri di ordine 2, che devono contenere l'elemento neutro e un altro elemento autosimmetrico, l'unica possibilità è perciò R_0 , R_{180} };
 - b) Il gruppo ha 6 elementi. Per il Teorema di Lagrange vi possono essere solo sottogruppi propri di ordine 2 e di ordine 3. I primi devono contenere l'elemento neutro e un altro elemento autosimmetrico, l'unica possibilità è perciò $\{R_0, R_{180}\}$. Per gli altri devono contenere l'unità e coppie di elementi uno simmetrico dell'altro, quindi solo due possibilità: $\{R_0, R_{60}, R_{300}\}$, $\{R_0, R_{120}, R_{240}\}$, ma la prima non va bene perché non è un gruppo, dato che R_{60} ° $R_{60} = R_{120}$; c) Il gruppo ha 8 elementi. Per il Teorema di Lagrange vi possono essere solo sottogruppi propri di ordine 2 e di ordine 4. I primi devono contenere l'elemento neutro e un altro elemento autosimmetrico, l'unica possibilità è perciò $\{R_0, R_{180}\}$. Per gli altri devono contenere l'unità e tre elementi di cui uno autosimmetrico (l'unico è R_{180}) e l'altra coppia di reciprocamente simmetrici, quindi le possibilità sono: $\{R_0, R_{45}, R_{180}, R_{315}\}$, $\{R_0, R_{90}, R_{180}, R_{270}\}$, $\{R_0, R_{135}, R_{180}, R_{225}\}$, ma il primo non è un sottogruppo, R_{45} ° R_{45} = R_{90} , così come il terzo, R_{135} ° R_{135} = R_{270} .
- 4. $\{R_0, R_{30}, R_{60}, ..., R_{330}\}$

Il gruppo ha 12 elementi. Per il Teorema di Lagrange vi possono essere solo sottogruppi propri di ordine 2, 3, 4, e 6. I primi devono contenere l'elemento neutro e un altro elemento autosimmetrico, l'unica possibilità è perciò $\{R_0, R_{180}\}$. Quelli di ordine 3 devono contenere l'unità e una coppia di elementi uno simmetrico dell'altro, solo $\{R_0, R_{120}, R_{240}\}$ è accettabile. Quelli di ordine 4 devono contenere l'unità, R_{180} e una coppia di elementi uno simmetrico dell'altro, solo $\{R_0, R_{90}, R_{180}, R_{270}\}$ è accettabile. Quelli di ordine 6 devono contenere l'unità, R_{180} e due coppie di elementi uno simmetrico dell'altro, solo $\{R_0, R_{60}, R_{120}, R_{180}, R_{240}, R_{300}\}$ è accettabile.

Stabilire quali fra i seguenti sono gruppi ciclici, determinando l'elemento generatore.

- 5. **a)** $(\mathbb{Z}_m,+)$; **b)** $(\mathbb{Z}_2[x],+)$ a) Ciclico, generato da [1]; b) Non è ciclico
- 6. $(\mathcal{M}_n, +)$, gruppo dei multipli interi del numero naturale n Ciclico, generato da n
- 7. Gruppo delle potenze intere di 10, rispetto al prodotto Ciclico, generato da 10
- 8. Gruppo delle sostituzioni su tre elementi: {1; 2; 3} Non è ciclico
- 9. a) $\{R_0, R_{30}, R_{60}, ..., R_{330}\}$; b) $\{R_0, R_{45}, R_{90}, ..., R_{315}\}$ a) Ciclico, generato da R_{30} ; b) Ciclico, gen. da R_{45}
- 10. a) Per quali valori di $k \in \mathbb{N}$, R_k genera gruppi ciclici? b) Per quale valore il gruppo ha maggiore cardinalità?
 - a) k deve essere divisore di 360; b) k = 1